
Attaching Galois Representations to Automorphic Representations

February 28, 2023

The aim of this talk is to establish our first connection between the Hecke rings of Arun’s talk, and the Galois deformation
rings of Zach and James’ talks. This goes via the construction of Galois representations from automorphic forms. First,
we discuss the history and why these were originally constructed. Then we move on to sketch the original constructions
of Eichler, Kuga-Sato, Shimura. Then the fundamental work of Deligne, which forms the framework for the general case.
Finally we state what is known in general.

Throughout, we ignore issues at the cusps (i.e. cohomology is actually interior cohomology etc).

1 Why Galois Representations were Attached to Modular Forms

Let

∆(q) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

be the discriminant modular form (of weight 12 and level SL2(Z)), and the Ramanujan τ -function. In the original work
of Ramanujan on the τ function, he made two conjectures (as well as many others): for each prime p,

1. |τ(p)| ≤ 2p11/2; and,

2. τ(p) ≡ 1 + p11 (mod 691).

The first remained for many years, the well known Ramanujan Conjecture. The second Ramanujan himself proved,
however it remained a mystery how these sorts of congruences systematically arose.

For the first conjecture, Weil made an important observation that the bound is very similar to the bounds that he had
proven for exponential sums. Work of Hasse and Davenport [HD] had related exponential sums to point counts of curves
over finite fields. That is, to bound the sum

Sf,λ =
∑

a (mod p)

eλ
2πif(a)

p

where f(x) ∈ Z[x] is a monic polynomial of degree d, they considered the Artin-Schreier curve

X : yp − y = f(x)

which has genus 1
2 (p− 1)(d− 1) and showed that

LX/Fp
(t) =

∏
1≤i≤d−1
1≤λ≤p−1

(1− ωi,λt)

where ωi,j ∈ C satisfy ∑
1≤i≤d−1

ωi,λ = Sf,λ.
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2 §1 Why Galois Representations were Attached to Modular Forms

In particular this means that

|X(Fp)| − p− 1 =
∑

1≤λ≤p−1

Sf,λ.

The Riemann hypothesis of Artin for curves over finite fields, which has already been proved by Hasse in the case of elliptic
curves, conjectures that |ωi| = p1/2. Weil realised bounding the exponential sums therefore followed from the Riemann
hypothesis for arbitrary algebraic curves, which he proved. This given the bound

|Sf,λ| ≤ (d− 1)p1/2.

Weil realised that the exponent is related to the degree of cohomology (and the constant factor is related to the dimension
of the corresponding part of cohomology - i.e. the motive) and calculations of this sort eventually led to his statement
of the Weil conjectures. He understood that the conjecture of Ramanujan could be settled in this cohomological fashion
if the coefficients of the τ -function could be realised inside the point counts of some algebraic variety over a finite field,
corresponding to some two dimensional piece of the degree 11 cohomology. At the time, no such sensible cohomology
theory existed.

Meanwhile, a relatively separate strand of mathematics was growing in discovering and proving more congruences of the
τ -function, and coefficients of other modular forms. Although there seems to have been quite an industry in this, there
was no general framework for studying congruences, or understanding in which cases no congruences existed. Serre came
to study this in [Ser67] after some time spent studying the l-adic representations attached to elliptic curves (the Tate
modules), where similar congruence phenomena arose and could be understood via the Galois representations.

For example, consider the elliptic curve 26.b2 which has conductor 26 and Weierstrass equation

E : y2 + xy + y = x3 − x2 − 3x+ 3.

This has a torsion point (1, 0) of order 7. Therefore, it’s 7-torsion as a Galois representation has a fixed vector, and
cyclotomic determinant (as always), and so is equivalent to a representation(

1 ∗
0 ϵ

)
.

Therefore for any l ∤ 7 ∗ 26,
al = Tr(Frobl) ≡ 1 + l (mod 7).

Indeed,
a3 = −3, a5 = −1, a11 = −2, ...

This congruence can be rephrased as the fact that the existence of torsion implies that the image of

ρE,7 : Gal
(
Q/Q

)
→ GL2(Z7)

has image in {
g ≡

(
1 ∗
0 ∗

)
(mod 7)

}
.

The study of the Tate modules, and the developing theory of etale cohomology relating the l-adic representations to
cohomology was the final missing piece - Serre realised that Weil’s dream of realising the τ -function via Frobenius on
cohomology was compatible with the study of congruences of the τ -function: both were to be realised in an attached
l-adic representation which should come somehow from cohomology!

Thus, Serre’s conjecture was born:

Conjecture 1.1. There should exist a continuous representation

ρ : Gal
(
Q/Q

)
→ GL2(Qp)

which satisfies
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• it is unramified away from p;

• for l ̸= p,

det(1− FrobpX) = 1− τ(p)X + p11X2

Furthermore, this should be a subquotient of étale cohomology in degree 11 of some algebraic variety over Q, in which
case the Weil conjectures imply the Ramanujan conjecture.

Clearly, it would be possible and interesting to generalise this the all modular forms.

Theorem 1.2. Let N ≥ 1 and k ≥ 2 be integers and ϵ : (Z/NZ)× → C× be a character. Let f =
∑

n anq
n ∈ Sk(N, ϵ)

be a normalized eigenform and λ|l be a place of Q(f). Then, there exists an l-adic representation Vf,Λ over Q(f)λ
such that for every p ∤ Nl, Vf,λ is unramified at p and

Tr(ϕp|Vf,λ) = ap(f).

This simultaneously gives a common framework for both of the previous lines of thought:

• If this l-adic representation comes from cohomology in degree 11, and the Weil conjectures are true, then get the
correct bound on τ(p) as it is the sum of two Weil p-numbers of weight 11.

• Suppose we consider the mod 691 representation and we can show that there is a fixed vector, then the representation
is equivalent to one of the form (

1 ∗
0 ϵ11

)
where ϵ is the mod 691 cyclotomic character. This means therefore that the trace is

τ(p) ≡ 1 + p11 (mod 691).

Therefore congruences that had been observed before we perfectly explained by understanding the image of the mod
l representations.

Therefore we are certainly interested in constructing l-adic Galois representations attached to modular forms. We saw that
modular forms can be related to certain cohomology groups last time via the Eichler-Shimura isomorphism. These were
sheaf cohomology groups on the complex analytic modular curves, so there is no Galois representation. Therefore we should
aim to construct the associated l-adic representation. The general conjecture was proven by Deligne in [Deligne1971]
via this strategy, which we will sketch now.

2 Modular Curves and Hecke Operators

For an integer N ≥ 3, there is a functor

FN : Sch −→ Set

S 7−→

{
pairs (E,α)

∣∣∣∣∣elliptic scheme E → S

α : Z/N ↪→ E[N ]

}/
∼

which is representable by a (disconnected) scheme YΓ1(N) over Spec (Z [1/N ]). (Note the slight change of notation between
mine and Arun’s talks - for me, modular curves will be the full disconnected versions). This comes with a universal elliptic
curve

E → YΓ1(N).
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We need another modular curve defined by a moduli functor that has not been mentioned yet. Let p be a prime not
dividing N . Then we define a functor FN,p which assigns to each scheme S the isomorphism classes of commutative
diagrams of S-schemes

FN,p : Sch −→ Set

S 7−→
{
diagrams D = D(E1, E2, ϕ, α1, α2)/S

}
/ ∼

where D = D(E1, E2, ϕ, α1, α2)/S denotes the following commutative diagram of S-schemes

Z/N

E1[N ] E2[N ]

E1 E2

α1 α2

ϕ

where E1, E2 are elliptic schemes over S, ϕ is a p-isogeny (i.e. a homomorphism of group schemes whose kernel is a finite
group scheme of order p, note that the kernel could have only one point, even at a geometric point of S, for example the
kernel of Frobenius at any characteristic p point), and α1, α2 are isomorphisms. The functor FN,p is represented by a
modular curve YΓ1(N ;p) where Γ(N ; p) := Γ1(N) ∩ Γ0(p). There are two natural transformations

g1, g2 : FN,p −→ FN

g1 : D 7−→ (E1, α1)

g2 : D 7−→ (E2, α2)

given by taking just the left or right hand sides of this diagram. These induce (via Yoneda) natural maps

g1, g2 : YΓ1(N ;p) → YΓ1(N).

There is also a natural involution

σ : FN,p −→ FN,p

D 7−→ (E2, E1, α2, pα1, ϕ̂)

of FN,p by taking the transpose of the horizontal maps.

Lemma 2.1. After base changing to C and taking analytification, there is an isomorphism (on each component)
between the two correspondences

YΓ1(N ;p)(C)an YΓ1(N ;p)(C)an Γαp \ H∗ Γαp \ H∗

YΓ1(N)(C)an YΓ1(N)(C)an Γ \ H∗ γ \ H∗

g1
g2

σ

g1

[αp]

where αp :=

(
1

p

)
.
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The right hand side is the correspondence we used to define the Hecke operator Tp last week. Therefore, we have an
algebraic way of considering the Hecke operators via these operations on modular curves, which we will need in order to
calculate the action of Hecke operators on the l-adic cohomology groups.

3 Galois Representations attached to modular forms

Last time, we saw the Eichler-Shimura isomorphism,

β : Sk(Γ1(N))⊕ Sk(Γ1(N)) ∼= H1(YΓ1(N)(C)an,Symk−2R1π∗CE) =: WC

As discussed above, this gives a way of recognising the coefficients of modular forms inside some cohomology groups. The
idea of Deligne was that if we can change this cohomology group to an etale cohomology group, then we should be able
to realise the coefficients inside an l-adic representation, and then hope that it satisfies the properties that we want.

We have a Q-form of WQ given by
WQ := H1(YΓ(C)an,Symk−2R1π∗Q).

This also has a T(N)-action. The Artin comparison theorem between singular and etale cohomology gives

V := WQ ⊗Q Ql
∼= H1

et(YΓ,Q,Sym
k−2R1

etπ∗Ql)

Lemma 3.1. The Ql-vector space V is a finite dimensional l-adic representation of Gal
(
Q/Q

)
unramified outside

lN .

Proof. That this representation is finite dimensional follows from the construction. So it suffices to understand the
ramification properties now. To do this, pick a prime p ∤ Nl. We have a smooth model

s : YΓ1(N) → Spec (Z[1/Nl])

of YΓ(N) over Z
[

1
Nl

]
, and Symk−2R1π∗Ql is l-adic with l prime to the characteristic of the base scheme of s, and so by

smooth proper base change,
F := R1s∗Sym

k−2R1
etπ∗Ql

is a l.c.c. sheaf over Spec (Z [1/Nl]), and all of its fibres at geometric points are isomorphic. The fibre FQp
is the restriction

of V to the corresponding decomposition group, and must be isomorphic as Galois representations to FFp
which is an

unramified representation since it factors through Gal
(
Fp/Fp

)
.

Therefore we are reduced to studying the Frobenius and Hecke actions on

V |GQp
= H1

et(YΓ1(N),Fp
,Symk−2R1

etπ∗Ql).

Now, we would like to explicitly write out the Hecke operator Tp in terms of a correspondence with YΓ(N ;p) over Fp, and
therefore relate it to the Frobenius.

3.1 Frobenius and Étale Cohomology

Quickly, we review the notion of Frobenius acting on étale cohomology, and how this can be related to the Frobenius
acting on characteristic p schemes, as well as the connection with moduli spaces.

General principles of étale cohomology say that for a variety X/Fp, the pullback of

F : X −→ X

x 7→ xp : OX 7−→ OX

on cohomology agrees with the Galois action of the geometric Frobenius Frob−1
p . Let E → S be any elliptic scheme in

characteristic p. By the commutativity of the diagram
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S S

YΓ1(N) YΓ1(N)

FS

g g

FY

implies that g∗F ∗
Y E = F ∗

Sg
∗E = (g∗E)(p), and so the morphism FY induces the natural transformation

F : FN −→ FN

(E,α) 7−→
(
E(p), α(p)

)
.

3.2 Action of the Hecke Operator

We are interested in the action of Tp on the cohomology group H1(YΓ1(N),Q,Sym
k−2R1π∗Ql). We need to be careful with

twisting the sheaf though so it it not just g1,∗g
∗
2 .

(E1, α1) (E2, α2)

(E , α) YΓ1(N ;p) (E , α)

YΓ1(N) YΓ1(N)

π1

ϕ

π1

π g2g1 π

The action is actually Tp = g1,∗ϕ
∗g∗2

3.3 The Eichler-Shimura Relation

Theorem 3.2. ϕp = Frob−1
p be the Galois geometric Frobenius acting on V . Then

Tp = ϕp + ⟨p⟩pk−1ϕ−1
p ∈ EndQl

(V ).

Proof. We have shown that ϕp = F ∗ ∈ EndQl
(V ). The idea is to split YΓ1(N ;p),Fp

into two components corresponding to
whether the subgroup scheme defined by α is connected or étale, and then compute on each component separately.

For every pair (E,α) ∈ FN (S) over S/Fp, we have a distinguished diagram (E,E(p), α, α(p), F ), given by the p-isogeny
defined by the Frobenius F : E → E(p). We call the dual isogeny the Verschiebung V : E(p) → E, which fits into the
diagram (E(p), E, α(p), pα, V ).

Therefore we get two natural transformations ΦF ,ΦV : FN |SchFp
→ FN,p|SchFp

, and two corresponding maps

ΦF ,ΦV :YΓ(N),Fp
→ YΓ(N ;p),Fp

.

ΦF :(E,α) 7→ (E,E(p), α, α(p), F )

ΦV :(E,α) 7→ (E(p), E, α(p), pα, V )

Consider a diagram D over S/Fp such that E/S is an ordinary elliptic scheme (i.e. it’s p-torsion subgroup scheme has
degree p étale part and degree p connected part). The kernel of the p-isogeny ϕ in D is either connected or étale. If it
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is connected, it must be the kernel of Frobenius, so D ∼= ΦF (E,α). If it is étale, the dual isogeny must have connected
kernel, so ϕ is isomorphic to the Verschiebung, i.e. D is in the image of ΦV .

Therefore the images of ΦF ,ΦV when restricted to the ordinary locus Y ord
Γ(N),Fp

are disjoint, and we can consider the

correspondence for Tp on each component separately. That is, we consider the two correspondences

Y ord
Γ(N),Fp

Y ord
Γ(N),Fp

Y ord
Γ(N ;p),Fp

Y ord
Γ(N ;p),Fp

Y ord
Γ(N),Fp

Y ord
Γ(N),Fp

Y ord
Γ(N),Fp

Y ord
Γ(N),Fp

ΦF

id F

ΦV

F ⟨p⟩

g1 g2 g1 g2

For the first correspondence, we are pulling back F , which induces ϕp on cohomology, and in the second, we are doing the
pushforward F∗ and the automorphism ⟨p⟩∗. Clearly, the composition of F ∗ and F∗ induces multiplication by p since F
is a degree p morphism, and so it induces multiplication by pk−1 on the cohomology group, so F∗ = pk−1F ∗. Therefore,

Tp = ϕp + ⟨p⟩pk−1ϕ−1
p

on a dense subset (the ordinary locus), and therefore this holds everywhere.

For each normalised eigenform f ∈ Sk(Γ1(N), ϵ), we have a ring homomorphism

T := Tk(Γ1(N)) −→ Kf

Tp 7−→ ap(f)

giving the corresponding system of Hecke eigenvalues. For a place λ|l of Kf define

Vf,λ := H1(YΓ1(N),Q,Sym
k−2R1π∗Ql)⊗T Kf,λ.

By the Eichler-Shimura isomorphism, and the Artin comparison theorem,

dimKf,λ
Vf,λ = dimKf⊗QC

((
Sk(Γ1(N))⊕ Sk(Γ1(N))

)
⊗T Kf

)
= 2

since each Hecke eigensystem appears with multiplicity 1 in Sk(Γ1(N)). Furthermore, by the Eichler-Shimura relation,

det (1− ϕpX|Vf,λ) = 1− ap(f)X + ϵ(p)pk−1X2.

4 Galois representations valued in Hecke rings

4.1 Hecke Rings and Eisenstein Ideals

Fix an isomorphism Ql
∼−→ C. The Hecke ring Tk ⊗Z Zl is a semi local ring with Krull dimension 1. The minimal

primes p are in one to one correspondence with Galois conjugates of newforms fp ∈ Sk(M) for some M |N , each of which
has a corresponding Galois representation into some finite extension of Ql. The maximal ideals m are in one to one
correspondence with the residual representations, which we will denote

ρm : Gal
(
Q/Q

)
→ GL2(Fl).

In other words, they determine mod l systems of Hecke eigenvalues.
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Definition 4.1. We say that a maximal ideal m ⊂ T ⊗ Zl is Eisenstein if ρm is reducible. Otherwise we say it is
non-Eisenstein.

4.2 Combining the Individual Representations

For each minimal prime p ⊂ m ⊂ T̂m, we have a corresponding representation. We would like to glue these together to
get a representation valued in T̂m. For this we use the following lemma of Carayol.

Lemma 4.2 ( [Gee09], Lemma 3.7). Suppose that ρ is absolutely irreducible. Let R be an object of CO, and
ρ : G → GLn(R) be a lifting of ρ.

1. If a ∈ GLn(R) and aρa−1 = ρ, then a ∈ R×.

2. If ρ′ : G → GLn(R) is another continuous lifting of ρ and trρ = trρ′, then there is some a ∈ ker (GLn(R) → GLn(F))
such that ρ′ = aρa−1.

3. If S ⊂ R is a closed subring with S ∈ obCO and mS = mR ∩ S, and if trρ(G) ⊂ S, then there is some
a ∈ ker(GLn(R) → GLn(F)) such that aρa−1 : G → GLn(S).

Proposition 4.3. Let m ⊂ Tk be a non-Eisenstein maximal ideal. Then there is a representation

ρmod
m : GQ → GL2(T̂k,m)

which is unramified p ∤ Nl and furthermore

trρmod
m (Frobp) = Tp,det ρ

mod
m (Frobp) = pk−1.

Thus we get a map Rρm
→ T̂k,m.

Proof. The minimal primes p ⊂ m ⊂ Tk ⊗Z Zl correspond to maps

T̂k,m → Ql,

and gives a corresponding Galois representation valued in Ql. We also have that

T̂k,m ⊗Zl
Ql

∼−→
∏
p

Ql.

If we take the sum of the attached Galois representations, we get a representation∏
ρf : GQ → GL2(T̂k,m ⊗Zp

Ql) =
∏
f

GL2(Ql).

These can be conjugated into
∏

f GL2(OQl
), so that each one has residual representation equal to (not just conjugate to)

ρm. More precisely, we have two equivalent representations∏
f

ρf :Gal
(
Q/Q

)
→

∏
f

GL2(OQl
) →

∏
f

GL2(Fl)

∏
f

ρm :Gal
(
Q/Q

)
→ GL2(T/m) →

∏
f

GL2(Fl).

Therefore we can individually conjugate each ρf such that these two representations are each, and so
∏

ρf has image in
GL2(S) where

S =
{
x ∈ T̂m ⊗Zl

|x ∈ T/m
}
.

Now T̂m ⊂ S satisfy the conditions for part (3) of Lemma 4.2, so we can conjugate to get a representation valued in
T̂k,m.
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5 Modular Forms over Totally Real Fields

Let F be a totally real field. Then we can do the same construction as above for Hilbert modular forms attached to this
totally real field.

Proposition 5.1 ( [Gee09], page 28). Let π be a regular algebraic cuspidal automorphic representation of GL2(A∞
F )

of weight (k, η). Then there is a CM field Lπ which contains the eigenvalues of Tν and Sν on π
GL2(OFν )
ν for each finite

place ν at which πν is unramified. Furthermore, for each finite place λ of Lπ there is a continuous irreducible Galois
representation

rλ(π) : GF → GL2(Lπ,λ)

such that

1. if πν is unramified and ν ∤ char(λ), then rλ(π)|GFν
is unramified, and the characteristic polynomial of Frobν is

X2 − tνX + (#k(ν)) sν .

2. For all finite places ν not dividing the residue characteristic of λ,

WD
(
rλ(π)|GFν

)F−ss ∼= recFν

(
πν ⊗ |det|−1/2

)
.

3. If ν divides the residue characteristic of λ then rλ(π)|GFν
is de Rham with τ HT weights ητ , ητ + kτ − 1, where

τ : F ↪→ Lπ ⊂ C is an embedding lying over ν. Furthermore, if πν is unramified, rλ(π)|GFν
is crystalline.

4. The representation is odd.

5.1 Local-Global Compatibility for Modular Forms

Suppose that f ∈ Sk(Γ1(N), ϵ). Then [LW14],

1. If p ∤ N , πf,p is unramified principal series with Satake parameters equal to the roots of X2 − apX + ϵ(p)pk−1.

2. If pr||N , and pr||cond(ϵ), πf,p is irreducible principal series π(χ1, χ2) where χ1 is unramified and χ1(p) = ap(f)/p
(k−1)/2,

and χ2 = ϵp/χ1, where ϵp is the p-part of the nebentypus, thought of as a character on Q×
p .

3. If p||N and p ∤ cond(ϵ), then πf,p is St ⊗ χ, an unramified twist of the Steinberg representations, with χ(p) =
ap(f)/p

(k−2)/2.

4. Otherwise, πf,p is supercuspidal.

The first two possibilities correspond to completely reducible Weil-Deligne representations, the third to decomposable but
irreducible WD reps, and the final possibility gives indecomposable WD reps. We know the action of Frobenius, so let’s
determine what this means for the action of inertia. Using the fact that

rec (π(χ1, χ2)) = (χ1 ⊕ χ2, 0)

rec (St) =

(
| · |1/2 ⊕ | · |−1/2,

(
1 0
0 0

))
,

we get that the cases above give rise to representations ρf,l|IQp
,

1. trivial representation;

2.

(
1 0
0 ϵp

)
;
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3.

(
1 ∗
0 1

)
.

4. something indecomposable.

6 Algebraic Geometry Background

Definition 6.1. • The category of locally constant constructible Zl-sheaves over a scheme S is the category
of projective systems of sheaves (Fn)n∈N on the etale site of Set each of which is a locally constant sheaf of

Z/(ln)-modules of finite type such that for n ≤ m, Fm ⊗ Z/(ln) ∼−→ Fn.

• The category of l.c.c. Ql-sheaves is the quotient of this category by the subcategory of Zl-sheaves annihilated
by some power of l.

Theorem 6.2 (Smooth Proper Base Change). Let π : Y → X be proper and smooth, and F be a l.c.c. sheaf on Yet

with torsion prime to char(X). Then ∀i ≥ 0, Riπ∗F is l.c.c., and in particular, if X is connected,

Hi(Yx,F|Yx) = (Riπ∗F)x

are isomorphic for all geometric points of X.
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