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Heavily based on Section 5 of Chapter 2 in [KDK].

1 Notation, Set-up, and Previous Results

Let E be a local field with uniformising element π and finite residue field Fq. Let F/Fq be a perfect valued complete
extension for a non-trivial valuation ν : F → R ∪ {∞}.

Denote by E/E the unique complete unramified extension of E inducing the extension F/Fq on residue fields. Then

E =

{ ∑
n≫−∞

[xn]π
n

∣∣∣∣∣xn ∈ F

}
.

This has a Frobenius φ acting on it, via the Frobenius acting on the extension F/Fq in the Teichmuller coefficients. We
define a subring

Bb
F =

{ ∑
n≫−∞

[xn]π
n ∈ E

∣∣∣∣∣ ν(xn) is bounded below

}
.

On this ring, we have valuations νr, r ≥ 0, given by

νr(x) = inf
n∈Z
{ν(xn) + nr} .

We define BF to be the completion of Bb
F with respect to these valuations for r > 0. This inherits an action of φ.

1.1 Ad Hoc Alg Geom Definitions

We make a number of ‘geometric’ definitions which we want to later make genuine.

Definition 1.1. The ‘set of closed points of Y ’, |Y |, is defined to be the set of primitive irreducible elements modulo
multiplication by an element of WOE

(OF ). This comes with a well defined degree function coming from the degree
of the primitive element.

Definition 1.2. The ‘set of effective divisors on Y ’ is given by

Div+(Y ) =

{∑
m

am[m]

∣∣∣∣∣∀I ⊂ (0, 1) compact, {m|am ̸= 0 and ||m|| ∈ I} if finite

}
.

We learnt that when? there is an injection

div : B \ 0/B× ↪→ Div+(Y )
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given by sending f to
∑

m∈|Y | ordm(f)[m], where ordm refers to the normalised valuation on B̂m. Note that here we

consider m as an ideal of B, which is the ideal generated by the corresponding primitive element of WOE
(OF ). We also

analysed the ‘divisors on the quotient |Y |/φZ’, given by

Div+(Y/φZ) =
{
D ∈ Div+(Y )|ϕ∗D = D

}
.

The above injection gives another injection

div :

⋃
d≥0

Pd \ {0}

 /E× → Div+(Y/φZ)

which is an isomorphism if F is algebraically closed.

We defined

PF,d = Bφ=πd

F , PF =
∑
n≥0

PF,d

2 The Fargues-Fontaine Curve

Definition 2.1. The (schematic) Fargues-Fontaine curve over F is defined as

XF := Proj

⊕
d≥0

Bφ=πd

F

 .

We will try and understand this scheme bit by bit.

1. Points

2. Residue Fields

3. Open covers

4. Local rings

Until explicitly stated otherwise, assume F = F .

The main technical tool that we require in order to prove the Theorem is the Fundamental exact sequence.

Theorem 2.2. F = F . Let t1, ..., tn ∈ P1 correspond to points m1, ...,mn ∈ |Y | in different φZ-orbits. Let a1, ..., an ∈
N≥1 and set d =

∑
i ai. Then for r ≥ 0, there is an exact sequence of E-vsps

0→ Pr

n∏
i=1

tai
i → Pd+r

u−→
n∏

i=1

B+
dR,mi

/mai
i → 0.

2.1 Points

The first thing we’d like to do is calculate the points of the curve. We have a guess, since the points of |YF | /φZ are in
bijection with elements of (P1 \ {0}) /E×. Also, each of these elements spans a homogeneous prime ideal Pt ⊂ P and so
gives a point in XF . That is, we have a map

α : (P1 \ {0}) /E× → XF

tE× 7→ ∞t := (t).
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Proposition 2.3. The map α is injective and its image is the closed points of XF .

Proof. Injectivity is clear, since (t) ∩ P1 = P0t = Et so the ideal uniquely determines the E-line P1. For the image, first
note that since P is graded factorial with irreducibles in degree 1, every prime ideal is either (0) or contains some ideal
(t). Therefore it suffices to look at P/(t) and prove this has no non-trivial homogeneous prime ideals.

We now apply the Fundamental Exact Sequence, with just the point t, which says that

0→ Prt→ Pr+1 → Cm → 0.

Therefore

P/(t) = E ⊕
⊕
r≥1

Cm = {f ∈ Cm[T ]|f(0) ∈ E} .

The only homogeneous primes are the zero and irrelevant ideals.

2.2 Local Rings and Residue Fields

Now, let’s calculate the residue field and local ring at a point tE× ↔ (t) ↔ m. Thinking of |Y | ⊂ Spec (B), we denoted
the residue field at m in Spec (B) by Cm, and the local ring by B+

dR,m so that

θm : B+
dR,m := B̂m ↠ Cm.

Again, we will prove that these hold for X as well. At a prime (t), the local ring OX,∞t is given by

OX,∞t
= P(t),0 =

⋃
y∈Pd\tPd−1

1

y
Pd.

Since y ̸∈ tPd−1, ordm(y) = 0, and so y ∈
(
B+

dR,m

)×
, which means that we can consider OX,∞t

⊂ B+
dR,m. From the FES,

we get

0→ t

y
Pd−1 →

1

y
Pd → Cm → 0.

And so the embedding OX,∞t ↪→ B+
dR,m is an embedding of DVRs sending a uniformising element to a uniformising

element and inducing an isomorphism on residue fields, so it is an isomorphism. Note that this also means that the ad
hoc definition of the divisors of functions

2.3 Open Covers

We would like to construct an affine cover of the scheme so that we might be able to understand it a little better
schematically (many definitions in scheme theory go via an open cover). Thinking of XF like P1 suggests that a good
open cover would come from remove each point to form copies of A1.

This logic leads us to examine the set D+(t) := {p ̸⊇ (t) : homogeneous prime ideals} ⊂ XF . We have seen above that

V +(t) = XF \D+(t) = {∞t} .

By usual algebraic geometry,

D+(t) = Spec

(
P

[
1

t

]
0

)
= Spec

(
B

[
1

t

]φ=1
)

Lemma 2.4. Suppose F = F . For t ∈ P1 \ {0}, the ring P
[
1
t

]φ=1
is a PID. However, contrary to the case of P1,

where the corresponding ring is E
[
x0

x1

]
, it is not Euclidean with the degree valuation, but only almost Euclidean (the

remainder has degree non-strictly less than the degree of the divisor).
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Proof. This is essentially the same as the proof above but applied to P
[
1
t

]
0
. We can factor any element into irreducibles

of the form t′

t where t′ ̸∈ Et. To exhibit the ideal generated by t′

t as a maximal ideal of B
[
1
t

]
0
, we clearly want it to be

the kernel of the map to the residue field at the prime corresponding to t′. So, consider the morphism

B

[
1

t

]
0

→ Cm′

where m′ is the element of |Y | attached to t′, thought of as an ideal of B. This morphism exists because θm′(t) ̸= 0 by
the identification

(P1 \ {0}) /E× ∼−→ |Y |/φZ.

By the FES, this is surjective with kernel generated by t′/t.

For the statement about almost Euclidean, suppose that x, y ∈ P
[
1
t

]
0
\ {0} have degrees d > d′ respectively. Then we

can write them as

x =
α

td
, y =

β

td′ , where α ∈ Pd \ tPd−1, β ∈ Pd′ \ tPd′−1.

The images of α, β in P/tP = {f ∈ Cm[T ]|f(0) ∈ E} are given by θm(α)T
d, θm(β)T

d′
. We want to take element γ ∈ Pd−d′

such that γ ≡ θm(α)
θm(β)T

d−d′ ∈ P/tP , but we can only guarantee the existence of this since d′ < d (this is where we differ

from the usual situation). We now take δ ∈ Pd−1 such that α = γβ + tδ, so that

x =
( γ

td−d′

)
y +

δ

td−1
.

We can now apply the usual recursion to get an almost Euclidean factorisation.

Corollary 2.5. The Fargues-Fontaine curve XF is an integral Noetherian regular scheme of dimension 1 over
Spec (E). However, it is not of finite type.

Proof Of Corollary. A PID is an regular Noetherian ring of Krull dimension 1. Also P is a domain, so XF is integral.
The residue fields are algebraically closed over E, so are not finite extensions, so XF is not of finite type.

3 The Fundamental Exact Sequence

Theorem 3.1. F = F . Let t1, ..., tn ∈ P1 correspond to points m1, ...,mn ∈ |Y | in different φZ-orbits. Let a1, ..., an ∈
N≥1 and set d =

∑
i ai. Then for r ≥ 0, there is an exact sequence of E-vsps

0→ Pr

n∏
i=1

tai
i → Pd+r

u−→
n∏

i=1

B+
dR,mi

/mai
i → 0.

We now need to prove this.

Proof. Injectivity is obvious.

Exactness in the middle is due to the fact that in B \ {0}, f is a multiple of g iff div(f) ≥ div(g). So it remains to prove
surjectivity. By induction, reduce this to the case n = 1, a1 = 1, so we need to prove that

θm : Bφ=π → Cm

To prove this, we use the description of Bφ=π via Lubin-Tate formal groups. Recall from Arun’s talk that there is an
isomorphism

G(OF ) = (mF ,+G) −→ Bφ=π

ϵ 7−→ logQ ([ϵ]Q)
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In Alex’s talk, we saw that
lim←−
φ

G(OCm
)

∼−→ G(OF ).

Since we are assuming F , and therefore also Cm, to be algebraically closed, we get an isomorphism

lim←−
x 7→xq

(1 +mOCm
)

∼−→ lim←−
φ

G(OCm
).

Working through the identifications, we see that θm : lim←−(1 +mOCm
)→ Cm is simply given by (x(n))n≥0 7→ log(x(0)).

4 Non-Algebraically Closed Fields

Now we analyse the curve in general. Let F be an arbitrary (perfect) extension of Fq. How does the curve XF relate to
X

F̂
? We will relate them on affine covers.

The morphism of graded algebras PF → P
F̂
induces a morphism

α : X
F̂
→ XF

Proposition 4.1. Let t ∈ PF,1 \ {0}. Then α−1(tPF ) = {tP
F̂
}. Now restrict α to a morphism

α : Spec

(
B

F̂

[
1

t

]φ=1
)
→ Spec

(
BF

[
1

t

]φ=1
)
.

Call these rings A
F̂
and AF respectively.The ring AF is a Dedekind domain, and the maps

I 7→ A
F̂
I

J 7→ J ∩AF

are inverse bijections between non-zero ideals of AF and non-zero GF -invariant ideals of B
F̂
.

Proof. First of all, we prove that

(A
F̂
)GF = H0(GF , A

F̂
) = AF

H1(GF , A
F̂
) = 0.

We pick an f ∈ AF \ {0}, and look at the f -adic completion of AF . By the above cohomological results,

AF /f
nAF =

(
A

F̂
/fnA

F̂

)GF

.

Suppose that f = u
∏r

i=1 f
ai
i in A

F̂
. Then the fundamental exact sequence tells us that

A
F̂
/fnA

F̂
=

r∏
i=1

B+

F̂ ,dR,m̂i

/m̂nai
i ,

where m̂i is the maximal ideal in
∣∣∣Y

F̂

∣∣∣ corresponding to fi. Let mj for 1 ≤ j ≤ s be the intersections m̂i ∩AF for each of

the GF -orbits. By Galois invariance of f , we see that the function ai is constant on the GF -orbits, so we think of it as a
function on the mj . Sen Theory combined with the Galois descent of Alex’s lecture tells us that(

A
F̂
/fA

F̂

)GF

=

s∏
j=1

B+
F,dR,mj

/m
naj

j
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so

AF,f =

s∏
j=1

BF,dR,mj

and functors I 7→ IGF and J 7→ A
F̂ ,f

J define inverse bijections between GF -invariant ideals of A
F̂ ,f

and ideals of AF,f .

It now suffices to show that finish off.

Theorem 4.2. • For all x ∈ |XF |, α−1(x) is a finite set of closed points of
∣∣∣X

X̂

∣∣∣.
• for x ∈

∣∣∣X
F̂

∣∣∣, either α(x) is the generic point of XF , in which case GFx is infinite, or α(x) is a closed point of

XF and GFx is finite.

• the induced map ∣∣∣X
F̂

∣∣∣GF−fin

/GF
∼−→ |XF | .

From this, we get the following corollary, descending from the algebraically closed case.

Corollary 4.3. 1. XF is a integral Noetherian regular scheme of dimension 1.

2. For x ∈ |XF |, set deg(x) = #α−1(x). Then for f ∈ E(XF )
×,

deg(div(f)) = 0.

Thus XF is a complete curve.

3. For m ∈ |YF |, define

pm =

 ∑
d≥degm

xd ∈ PF

∣∣∣∣∣∣xd ∈ PF,d,div(xd) ≥
∑
n∈Z

[φn(m)]

 ,

which is a prime homogeneous ideal. Furthermore

|YF |/φZ −→ |XF |
φZ(m) 7−→ pm

is an isomorphism, and there is an identification OXF ,pm
= B+

F,dR,m.

Proof of Theorem.

Spec (Z) ∼= Gal
(
Q/Q

)
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