Fargues-Fontaine Seminar - The Curve

George Robinson

December 2, 2022

Heavily based on Section 5 of Chapter 2 in [KDK].

1 Notation, Set-up, and Previous Results

Let *E* be a local field with uniformising element π and finite residue field \mathbb{F}_q . Let F/\mathbb{F}_q be a perfect valued complete extension for a non-trivial valuation $\nu : F \to \mathbb{R} \cup \{\infty\}$.

Denote by \mathcal{E}/E the unique complete unramified extension of E inducing the extension F/\mathbb{F}_q on residue fields. Then

$$\mathcal{E} = \left\{ \sum_{n \gg -\infty} [x_n] \pi^n \, \middle| \, x_n \in F \right\}.$$

This has a Frobenius φ acting on it, via the Frobenius acting on the extension F/\mathbb{F}_q in the Teichmuller coefficients. We define a subring

$$B_F^b = \left\{ \sum_{n \gg -\infty} [x_n] \, \pi^n \in \mathcal{E} \, \middle| \, \nu(x_n) \text{ is bounded below} \right\}.$$

On this ring, we have valuations $\nu_r, r \ge 0$, given by

$$\nu_r(x) = \inf_{n \in \mathbb{Z}} \left\{ \nu(x_n) + nr \right\}.$$

We define B_F to be the completion of B_F^b with respect to these valuations for r > 0. This inherits an action of φ .

1.1 Ad Hoc Alg Geom Definitions

We make a number of 'geometric' definitions which we want to later make genuine.

Definition 1.1. The 'set of closed points of Y', |Y|, is defined to be the set of primitive irreducible elements modulo multiplication by an element of $W_{\mathcal{O}_E}(\mathcal{O}_F)$. This comes with a well defined degree function coming from the degree of the primitive element.

Definition 1.2. The 'set of effective divisors on Y' is given by

$$\operatorname{Div}^+(Y) = \left\{ \sum_{\mathfrak{m}} a_{\mathfrak{m}}[\mathfrak{m}] \middle| \forall I \subset (0,1) \text{ compact}, \ \{\mathfrak{m} | a_{\mathfrak{m}} \neq 0 \text{ and } ||\mathfrak{m}|| \in I \} \text{ if finite} \right\}.$$

We learnt that when? there is an injection

$$\operatorname{div}: B \setminus 0/B^{\times} \hookrightarrow \operatorname{Div}^+(Y)$$

given by sending f to $\sum_{\mathfrak{m}\in |Y|} \operatorname{ord}_{\mathfrak{m}}(f)[\mathfrak{m}]$, where $\operatorname{ord}_{\mathfrak{m}}$ refers to the normalised valuation on $\widehat{B_{\mathfrak{m}}}$. Note that here we consider \mathfrak{m} as an ideal of B, which is the ideal generated by the corresponding primitive element of $W_{\mathcal{O}_E}(\mathcal{O}_F)$. We also analysed the 'divisors on the quotient $|Y|/\varphi^{\mathbb{Z}}$ ', given by

$$\operatorname{Div}^+(Y/\varphi^{\mathbb{Z}}) = \left\{ D \in \operatorname{Div}^+(Y) | \phi^* D = D \right\}.$$

The above injection gives another injection

div :
$$\left(\bigcup_{d\geq 0} P_d \setminus \{0\}\right) / E^{\times} \to \operatorname{Div}^+(Y/\varphi^{\mathbb{Z}})$$

which is an isomorphism if F is algebraically closed. We defined

$$P_{F,d} = B_F^{\varphi = \pi^d}, P_F = \sum_{n \ge 0} P_{F,d}$$

2 The Fargues-Fontaine Curve

Definition 2.1. The (schematic) Fargues-Fontaine curve over F is defined as

$$X_F := \operatorname{Proj}\left(\bigoplus_{d \ge 0} B_F^{\varphi = \pi^d}\right).$$

We will try and understand this scheme bit by bit.

- 1. Points
- 2. Residue Fields
- 3. Open covers
- 4. Local rings

Until explicitly stated otherwise, assume $F = \overline{F}$.

The main technical tool that we require in order to prove the Theorem is the Fundamental exact sequence.

Theorem 2.2. $F = \overline{F}$. Let $t_1, ..., t_n \in P_1$ correspond to points $\mathfrak{m}_1, ..., \mathfrak{m}_n \in |Y|$ in different $\varphi^{\mathbb{Z}}$ -orbits. Let $a_1, ..., a_n \in \mathbb{N}_{\geq 1}$ and set $d = \sum_i a_i$. Then for $r \geq 0$, there is an exact sequence of E-vsps

$$0 \to P_r \prod_{i=1}^n t_i^{a_i} \to P_{d+r} \xrightarrow{u} \prod_{i=1}^n B^+_{dR,\mathfrak{m}_i}/\mathfrak{m}_i^{a_i} \to 0$$

2.1 Points

The first thing we'd like to do is calculate the points of the curve. We have a guess, since the points of $|Y_F|/\varphi^{\mathbb{Z}}$ are in bijection with elements of $(P_1 \setminus \{0\})/E^{\times}$. Also, each of these elements spans a homogeneous prime ideal $Pt \subset P$ and so gives a point in X_F . That is, we have a map

$$\alpha : (P_1 \setminus \{0\}) / E^{\times} \to X_F$$
$$tE^{\times} \mapsto \infty_t := (t).$$

Proposition 2.3. The map α is injective and its image is the closed points of X_F .

Proof. Injectivity is clear, since $(t) \cap P_1 = P_0 t = Et$ so the ideal uniquely determines the *E*-line P_1 . For the image, first note that since *P* is graded factorial with irreducibles in degree 1, every prime ideal is either (0) or contains some ideal (t). Therefore it suffices to look at P/(t) and prove this has no non-trivial homogeneous prime ideals.

We now apply the Fundamental Exact Sequence, with just the point t, which says that

$$0 \to P_r t \to P_{r+1} \to C_{\mathfrak{m}} \to 0.$$

Therefore

$$P/(t) = E \oplus \bigoplus_{r \ge 1} C_{\mathfrak{m}} = \{ f \in C_{\mathfrak{m}}[T] | f(0) \in E \}.$$

The only homogeneous primes are the zero and irrelevant ideals.

2.2 Local Rings and Residue Fields

Now, let's calculate the residue field and local ring at a point $tE^{\times} \leftrightarrow (t) \leftrightarrow \mathfrak{m}$. Thinking of $|Y| \subset \text{Spec}(B)$, we denoted the residue field at \mathfrak{m} in Spec(B) by $C_{\mathfrak{m}}$, and the local ring by $B^+_{dB,\mathfrak{m}}$ so that

$$\theta_{\mathfrak{m}}: B^+_{dR,\mathfrak{m}} := B_{\mathfrak{m}} \twoheadrightarrow C_{\mathfrak{m}}$$

Again, we will prove that these hold for X as well. At a prime (t), the local ring \mathcal{O}_{X,∞_t} is given by

$$\mathcal{O}_{X,\infty_t} = P_{(t),0} = \bigcup_{y \in P_d \setminus tP_{d-1}} \frac{1}{y} P_d.$$

Since $y \notin tP_{d-1}$, $\operatorname{ord}_{\mathfrak{m}}(y) = 0$, and so $y \in \left(B_{dR,\mathfrak{m}}^+\right)^{\times}$, which means that we can consider $\mathcal{O}_{X,\infty_t} \subset B_{dR,\mathfrak{m}}^+$. From the FES, we get

$$0 \to \frac{t}{y} P_{d-1} \to \frac{1}{y} P_d \to C_{\mathfrak{m}} \to 0.$$

And so the embedding $\mathcal{O}_{X,\infty_t} \hookrightarrow B^+_{dR,\mathfrak{m}}$ is an embedding of DVRs sending a uniformising element to a uniformising element and inducing an isomorphism on residue fields, so it is an isomorphism. Note that this also means that the ad hoc definition of the divisors of functions

2.3 Open Covers

We would like to construct an affine cover of the scheme so that we might be able to understand it a little better schematically (many definitions in scheme theory go via an open cover). Thinking of X_F like \mathbb{P}^1 suggests that a good open cover would come from remove each point to form copies of \mathbb{A}^1 .

This logic leads us to examine the set $D^+(t) := \{ \mathfrak{p} \not\supseteq (t) : \text{homogeneous prime ideals} \} \subset X_F$. We have seen above that

$$V^+(t) = X_F \setminus D^+(t) = \{\infty_t\}.$$

By usual algebraic geometry,

$$D^{+}(t) = \operatorname{Spec}\left(P\left[\frac{1}{t}\right]_{0}\right) = \operatorname{Spec}\left(B\left[\frac{1}{t}\right]^{\varphi=1}\right)$$

Lemma 2.4. Suppose $F = \overline{F}$. For $t \in P_1 \setminus \{0\}$, the ring $P\left[\frac{1}{t}\right]^{\varphi=1}$ is a PID. However, contrary to the case of \mathbb{P}^1 , where the corresponding ring is $E\left[\frac{x_0}{x_1}\right]$, it is not Euclidean with the degree valuation, but only almost Euclidean (the remainder has degree non-strictly less than the degree of the divisor).

Proof. This is essentially the same as the proof above but applied to $P\left[\frac{1}{t}\right]_0$. We can factor any element into irreducibles of the form $\frac{t'}{t}$ where $t' \notin Et$. To exhibit the ideal generated by $\frac{t'}{t}$ as a maximal ideal of $B\left[\frac{1}{t}\right]_0$, we clearly want it to be the kernel of the map to the residue field at the prime corresponding to t'. So, consider the morphism

$$B\left[\frac{1}{t}\right]_0 \to C_{\mathfrak{m}}$$

where \mathfrak{m}' is the element of |Y| attached to t', thought of as an ideal of B. This morphism exists because $\theta_{\mathfrak{m}'}(t) \neq 0$ by the identification

$$(P_1 \setminus \{0\}) / E^{\times} \xrightarrow{\sim} |Y| / \varphi^{\mathbb{Z}}$$

By the FES, this is surjective with kernel generated by t'/t.

For the statement about almost Euclidean, suppose that $x, y \in P\left[\frac{1}{t}\right]_0 \setminus \{0\}$ have degrees d > d' respectively. Then we can write them as

$$x = \frac{\alpha}{t^d}, y = \frac{\beta}{t^{d'}}, \text{ where } \alpha \in P_d \setminus tP_{d-1}, \beta \in P_{d'} \setminus tP_{d'-1}$$

The images of α, β in $P/tP = \{f \in C_{\mathfrak{m}}[T] | f(0) \in E\}$ are given by $\theta_{\mathfrak{m}}(\alpha)T^{d}, \theta_{\mathfrak{m}}(\beta)T^{d'}$. We want to take element $\gamma \in P_{d-d'}$ such that $\gamma \equiv \frac{\theta_{\mathfrak{m}}(\alpha)}{\theta_{\mathfrak{m}}(\beta)}T^{d-d'} \in P/tP$, but we can only guarantee the existence of this since d' < d (this is where we differ from the usual situation). We now take $\delta \in P_{d-1}$ such that $\alpha = \gamma\beta + t\delta$, so that

$$x = \left(\frac{\gamma}{t^{d-d'}}\right)y + \frac{\delta}{t^{d-1}}$$

We can now apply the usual recursion to get an almost Euclidean factorisation.

Corollary 2.5. The Fargues-Fontaine curve X_F is an integral Noetherian regular scheme of dimension 1 over Spec (E). However, it is not of finite type.

Proof Of Corollary. A PID is an regular Noetherian ring of Krull dimension 1. Also P is a domain, so X_F is integral. The residue fields are algebraically closed over E, so are not finite extensions, so X_F is not of finite type.

3 The Fundamental Exact Sequence

Theorem 3.1. $F = \overline{F}$. Let $t_1, ..., t_n \in P_1$ correspond to points $\mathfrak{m}_1, ..., \mathfrak{m}_n \in |Y|$ in different $\varphi^{\mathbb{Z}}$ -orbits. Let $a_1, ..., a_n \in \mathbb{N}_{\geq 1}$ and set $d = \sum_i a_i$. Then for $r \geq 0$, there is an exact sequence of *E*-vsps

$$0 \to P_r \prod_{i=1}^n t_i^{a_i} \to P_{d+r} \xrightarrow{u} \prod_{i=1}^n B_{dR,\mathfrak{m}_i}^+ / \mathfrak{m}_i^{a_i} \to 0$$

We now need to prove this.

Proof. Injectivity is obvious.

Exactness in the middle is due to the fact that in $B \setminus \{0\}$, f is a multiple of g iff $\operatorname{div}(f) \ge \operatorname{div}(g)$. So it remains to prove surjectivity. By induction, reduce this to the case $n = 1, a_1 = 1$, so we need to prove that

$$\theta_{\mathfrak{m}}: B^{\varphi=\pi} \to C_{\mathfrak{m}}$$

To prove this, we use the description of $B^{\varphi=\pi}$ via Lubin-Tate formal groups. Recall from Arun's talk that there is an isomorphism

$$\mathcal{G}(\mathcal{O}_F) = (\mathfrak{m}_F, +_{\mathcal{G}}) \longrightarrow B^{\varphi = \pi}$$
$$\epsilon \longmapsto \log_Q \left([\epsilon]_Q \right)$$

In Alex's talk, we saw that

$$\varprojlim_{\mathcal{O}} \mathcal{G}(\mathcal{O}_{C_{\mathfrak{m}}}) \xrightarrow{\sim} \mathcal{G}(\mathcal{O}_{F}).$$

Since we are assuming F, and therefore also $C_{\mathfrak{m}}$, to be algebraically closed, we get an isomorphism

$$\lim_{x \mapsto x^q} (1 + \mathfrak{m}\mathcal{O}_{C_{\mathfrak{m}}}) \xrightarrow{\sim} \lim_{\varphi} \mathcal{G}(\mathcal{O}_{C_{\mathfrak{m}}}).$$

Working through the identifications, we see that $\theta_{\mathfrak{m}} : \varprojlim (1 + \mathfrak{m}\mathcal{O}_{C_{\mathfrak{m}}}) \to C_{\mathfrak{m}}$ is simply given by $(x^{(n)})_{n \ge 0} \mapsto \log(x^{(0)})$. \Box

4 Non-Algebraically Closed Fields

Now we analyse the curve in general. Let F be an arbitrary (perfect) extension of \mathbb{F}_q . How does the curve X_F relate to $X_{\widehat{E}}$? We will relate them on affine covers.

The morphism of graded algebras $P_F \to P_{\widehat{F}}$ induces a morphism

$$\alpha: X_{\widehat{F}} \to X_I$$

Proposition 4.1. Let $t \in P_{F,1} \setminus \{0\}$. Then $\alpha^{-1}(tP_F) = \{tP_{\widehat{F}}\}$. Now restrict α to a morphism

$$\alpha: \operatorname{Spec}\left(B_{\widehat{F}}\left[\frac{1}{t}\right]^{\varphi=1}\right) \to \operatorname{Spec}\left(B_F\left[\frac{1}{t}\right]^{\varphi=1}\right).$$

Call these rings $A_{\widehat{F}}$ and A_F respectively. The ring A_F is a Dedekind domain, and the maps

$$I \mapsto A_{\widehat{F}}I$$
$$J \mapsto J \cap A_{\widehat{F}}$$

are inverse bijections between non-zero ideals of A_F and non-zero G_F -invariant ideals of $B_{\widehat{F}}$.

Proof. First of all, we prove that

$$(A_{\widehat{F}})^{G_F} = \mathrm{H}^0(G_F, A_{\widehat{F}}) = A_F$$
$$\mathrm{H}^1(G_F, A_{\widehat{F}}) = 0.$$

We pick an $f \in A_F \setminus \{0\}$, and look at the f-adic completion of A_F . By the above cohomological results,

$$A_F/f^n A_F = \left(A_{\widehat{F}}/f^n A_{\widehat{F}}\right)^{G_F}$$

Suppose that $f = u \prod_{i=1}^{r} f_i^{a_i}$ in $A_{\widehat{F}}$. Then the fundamental exact sequence tells us that

$$A_{\widehat{F}}/f^n A_{\widehat{F}} = \prod_{i=1}^r B_{\widehat{F},dR,\widehat{\mathfrak{m}}_i}^+ / \widehat{\mathfrak{m}}_i^{na_i},$$

where $\widehat{\mathfrak{m}}_i$ is the maximal ideal in $|Y_{\widehat{F}}|$ corresponding to f_i . Let \mathfrak{m}_j for $1 \leq j \leq s$ be the intersections $\widehat{\mathfrak{m}}_i \cap A_F$ for each of the G_F -orbits. By Galois invariance of f, we see that the function a_i is constant on the G_F -orbits, so we think of it as a function on the \mathfrak{m}_j . Sen Theory combined with the Galois descent of Alex's lecture tells us that

$$\left(A_{\widehat{F}}/fA_{\widehat{F}}\right)^{G_F} = \prod_{j=1}^s B^+_{F,dR,\mathfrak{m}_j}/\mathfrak{m}_j^{na_j}$$

 \mathbf{SO}

6

$$A_{F,f} = \prod_{j=1}^{s} B_{F,dR,\mathfrak{m}_j}$$

and functors $I \mapsto I^{G_F}$ and $J \mapsto A_{\widehat{F},f} J$ define inverse bijections between G_F -invariant ideals of $A_{\widehat{F},f}$ and ideals of $A_{F,f}$. It now suffices to show that finish off.

Theorem 4.2. • For all $x \in |X_F|$, $\alpha^{-1}(x)$ is a finite set of closed points of $|X_{\widehat{X}}|$.

- for $x \in |X_{\widehat{F}}|$, either $\alpha(x)$ is the generic point of X_F , in which case $G_F x$ is infinite, or $\alpha(x)$ is a closed point of X_F and $G_F x$ is finite.
- the induced map

$$\left|X_{\widehat{\overline{F}}}\right|^{G_F - fin} / G_F \xrightarrow{\sim} |X_F|.$$

From this, we get the following corollary, descending from the algebraically closed case.

Corollary 4.3. 1. X_F is a integral Noetherian regular scheme of dimension 1.

2. For $x \in |X_F|$, set deg $(x) = \#\alpha^{-1}(x)$. Then for $f \in E(X_F)^{\times}$,

 $\deg(\operatorname{div}(f)) = 0.$

Thus X_F is a complete curve.

3. For $\mathfrak{m} \in |Y_F|$, define

$$\mathfrak{p}_{\mathfrak{m}} = \left\{ \left| \sum_{d \ge \operatorname{degm}} x_d \in P_F \right| x_d \in P_{F,d}, \operatorname{div}(x_d) \ge \sum_{n \in \mathbb{Z}} \left[\varphi^n(\mathfrak{m}) \right] \right\}$$

which is a prime homogeneous ideal. Furthermore

$$\begin{aligned} |Y_F|/\varphi^{\mathbb{Z}} &\longrightarrow |X_F| \\ \varphi^{\mathbb{Z}}(\mathfrak{m}) &\longmapsto \mathfrak{p}_{\mathfrak{m}} \end{aligned}$$

is an isomorphism, and there is an identification $\mathcal{O}_{X_F,\mathfrak{p}_{\mathfrak{m}}} = B^+_{F,dR,\mathfrak{m}}$.

Proof of Theorem.

$$\operatorname{Spec}\left(\mathbb{Z}\right)\cong\operatorname{Gal}\left(\overline{\mathbb{Q}}/\mathbb{Q}\right)$$